DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death
نویسندگان
چکیده
A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.
منابع مشابه
Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death
Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Bo...
متن کاملPhenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury
OBJECTIVE Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. METHOD...
متن کاملUrtica Dioica Distillate Regenerates Pancreatic Beta Cells in Streptozotocin-Induced Diabetic Rats
Background: Urtica dioica is known as an anti-hyperglycemic plant. Urtica dioica distillate (UD) is a traditional Iranian drink, locally known as “aragh gazaneh”. In spite of its widespread consumption in Iran, according to traditional Iranian medicine, there is no scientific report on the usefulness of UD for diabetic patients. This survey was designed to evaluate its protective effects for th...
متن کاملDeletion of STAT-1 pancreatic islets protects against streptozotocin-induced diabetes and early graft failure but not against late rejection.
OBJECTIVE Exposure of beta-cells to inflammatory cytokines leads to apoptotic cell death through the activation of gene networks under the control of specific transcription factors, such as interferon-gamma-induced signal transducer and activator of transcription (STAT)-1. We previously demonstrated that beta-cells lacking STAT-1 are resistant to cytokine-induced cell death in vitro. The aim of...
متن کاملBrief Report Deletion of STAT-1 Pancreatic Islets Protects Against Streptozotocin-Induced Diabetes and Early Graft Failure but Not Against Late Rejection
OBJECTIVE—Exposure of -cells to inflammatory cytokines leads to apoptotic cell death through the activation of gene networks under the control of specific transcription factors, such as interferon–induced signal transducer and activator of transcription (STAT)-1. We previously demonstrated that -cells lacking STAT-1 are resistant to cytokine-induced cell death in vitro. The aim of this study wa...
متن کامل